nitksam@gmail.com

Advanced Linear Algebra (MA 409) Problem Sheet - 9

Invertibility and Isomorphisms

- 1. Label the following statements as true or false. In each part, V and W are vector spaces with ordered (finite) bases α and β , respectively, $T:V\to W$ is linear, and A and B are matrices.
 - (a) $([T]_{\alpha}^{\beta})^{-1} = [T^{-1}]_{\alpha}^{\beta}$.
 - (b) *T* is invertible if and only if *T* is one-to-one and onto.
 - (c) $T = L_A$, where $A = \left[T\right]_{\alpha}^{\beta}$.
 - (d) $M_{2\times 3}(F)$ is isomorphic to F^5 .
 - (e) $P_n(F)$ is isomorphic to $P_m(F)$ if and only if n = m.
 - (f) AB = I implies that A and B are invertible.
 - (g) If *A* is invertible, then $(A^{-1})^{-1} = A$.
 - (h) A is invertible if and only if L_A is invertible.
 - (i) A must be square in order to possess an inverse.
- 2. For each of the following linear transformations *T*, determine whether *T* is invertible and justify your answer.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (a_1 2a_2, a_2, 3a_1 + 4a_2)$.
 - (b) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(a_1, a_2, a_3) = (3a_1 2a_3, a_2, 3a_1 + 4a_2)$.
 - (c) $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ defined by T(p(x)) = p'(x).
 - (d) $T: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$ defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c+d)x^2$.
 - (e) $T: M_{2\times 2}(\mathbb{R}) \to M_{2x2}(\mathbb{R})$ defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b & a \\ c & c+d \end{pmatrix}$.
- 3. Which of the following pairs of vector spaces are isomorphic? Justify your answers.
 - (a) F^3 and $P_3(F)$.
 - (b) F^4 and $P_3(F)$.
 - (c) $M_{2\times 2}(\mathbb{R})$ and $P_3(\mathbb{R})$.
 - (d) $V = \{ A \in M_{2 \times 2}(\mathbb{R}) : tr(A) = 0 \}$ and \mathbb{R}^4 .

- 4. Let *A* and *B* be $n \times n$ invertible matrices. Prove that *AB* is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- 5. Let *A* be invertible. Prove that A^t is invertible and $(A^t)^{-1} = (A^{-1})^t$.
- 6. Prove that if *A* is invertible and AB = O, then B = O.
- 7. Let *A* be an $n \times n$ matrix.
 - (a) Suppose that $A^2 = O$. Prove that A is not invertible.
 - (b) Suppose that AB = O for some nonzero $n \times n$ matrix B. Could A be invertible? Explain.
- 8. Let A and B be $n \times n$ matrices such that AB is invertible. Prove that A and B are invertible. Give an example to show that arbitrary matrices A and B need not be invertible if AB is invertible.
- 9. Let *A* and *B* be $n \times n$ matrices such that $AB = I_n$.
 - (a) Use the above exercise to conclude that *A* and *B* are invertible.
 - (b) Prove $A = B^{-1}$ (and hence $B = A^{-1}$). (We are, in effect, saying that for square matrices, a "one-sided" inverse is a "two-sided" inverse.)
 - (c) State and prove analogous results for linear transformations defined on finite-dimensional vector spaces.
- 10. Define

$$T: P_3(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R}) \text{ by } T(f) = \begin{pmatrix} f(1) & f(2) \\ f(3) & f(4) \end{pmatrix}.$$

Show that the linear transformation T is one-to-one.

[Hint: Lagrange interpolation formula].

- 11. Let \sim mean "is isomorphic to." Prove that \sim is an equivalence relation on the class of vector spaces over F.
- 12. Let

$$V = \left\{ \left(\begin{array}{cc} a & a+b \\ 0 & c \end{array} \right) : a, b, c \in F \right\}.$$

Construct an isomorphism from V to F^3 .

- 13. Let V and W be n-dimensional vector spaces, and let $T:V\to W$ be a linear transformation. Suppose that β is a basis for V. Prove that T is an isomorphism if and only if $T(\beta)$ is a basis for W.
- 14. Let *B* be an $n \times n$ invertible matrix. Define $\Phi : M_{n \times n}(F) \to M_{n \times n}(F)$ by $\Phi(A) = B^{-1}AB$. Prove that Φ is an isomorphism.

- 15. Let *V* and *W* be finite-dimensional vector spaces and $T: V \to W$ be an isomorphism. Let V_0 be a subspace of *V*.
 - (a) Prove that $T(V_0)$ is a subspace of W.
 - (b) Prove that $\dim(V_0) = \dim(T(V_0))$.

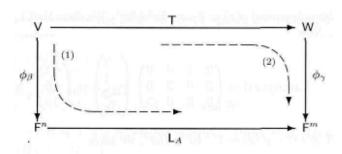
Let V and W be vector spaces of dimension n and m, and let $T:V\to W$ be a linear transformation. Define $A=[T]^{\gamma}_{\beta}$, where β and γ are arbitrary ordered bases of V and W, respectively. Here $\phi_{\beta}:V\to F^n$ defined by

$$\phi_{\beta}(x) = [x]_{\beta}$$
 for each $x \in V$

is called the **standard representation of** V **with respect to** β . In a similar way ϕ_{γ} is defined. Using ϕ_{β} and ϕ_{γ} , we have the relationship

$$L_A \phi_\beta = \phi_\gamma T$$

between the linear transformations T and $L_A: F^n \to F^m$. Heuristically, this relationship indicates that after V and W are identified with F^n and F^m via ϕ_β and ϕ_γ , respectively, we may "identify" T with L_A .



This diagram allows us to transfer operations on abstract vector spaces to ones on F^n and F^m .

16. Let $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear transformation defined by

$$T(f(x)) = f'(x).$$

Let β and γ be the standard ordered bases for $P_3(\mathbb{R})$ and $P_2(\mathbb{R})$, respectively, and let $\phi_{\beta}: P_3(\mathbb{R}) \to \mathbb{R}^4$ and $\phi_{\gamma}: P_2(\mathbb{R}) \to \mathbb{R}^3$ be the corresponding standard representations of $P_3(\mathbb{R})$ and $P_2(\mathbb{R})$. If $A = [T]_{\beta}^{\gamma}$, then

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

Show that $L_A \phi_{\beta}(p(x)) = \phi_{\gamma} T(p(x))$ for $p(x) = 1 + x + 2x^2 + x^3$.

- 17. Let $T:V\to W$ be a linear transformation from an n-dimensional vector space V to an m-dimensional vector space W. Let β and γ be ordered bases for V and W, respectively. Prove that $rank(T)=rank(L_A)$ and that $nullity(T)=nullity(L_A)$, where $A=[T]^{\gamma}_{\beta}$.
- 18. Let V and W be finite-dimensional vector spaces with ordered bases $\beta = \{v_1, v_2, \dots, v_n\}$ and $\gamma = \{w_1, w_2, \dots, w_m\}$, respectively. Then there exist linear transformations $T_{ij}: V \to W$ such that

$$T_{ij}(v_k) = \begin{cases} w_i & \text{if } k = j \\ 0 & \text{if } k \neq j. \end{cases}$$

First prove that $\{T_{ij}: 1 \leq i \leq m, 1 \leq j \leq n\}$ is a basis for $\mathcal{L}(V,W)$. Then let M^{ij} be the $m \times n$ matrix with 1 in the ith row and jth column and 0 elsewhere, and prove that $[T_{ij}]^{\gamma}_{\beta} = M^{ij}$. Also there exists a linear transformation $\Phi: \mathcal{L}(V,W) \to M_{m \times n}(F)$ such that $\Phi(T_{ii}) = M^{ij}$. Prove that Φ is an isomorphism.

19. Let c_0, c_1, \ldots, c_n be distinct scalars from an infinite field F. Define $T: P_n(F) \to F^{n+1}$ by

$$T(f) = (f(c_0), f(c_1), \dots, f(c_n)).$$

Prove that *T* is an isomorphism.

Hint: Use the Lagrange polynomials associated with c_0, c_1, \ldots, c_n .

20. Let V denote the vector space of all sequences $\{a_n\}$ in F that have only a finite number of non-zero terms a_n . We denote the sequence $\{a_n\}$ by σ such that $\sigma(n) = a_n$ for $n = 0, 1, \ldots$ defined in Example 5 of Section 1.2, and let W = P(F). Define

$$T: V \to W$$
 by $T(\sigma) = \sum_{i=0}^{n} \sigma(i) x^{i}$,

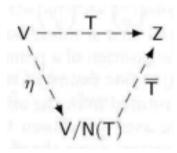
where *n* is the largest integer such that $\sigma(n) \neq 0$. Prove that *T* is an isomorphism.

21. Let $T: V \to Z$ be a linear transformation of a vector space V onto a vector space Z. Define the mapping

$$\overline{\mathbf{T}}: V/N(T) \to Z$$
 by $\overline{\mathbf{T}}(v+N(T)) = T(v)$

for any coset v + N(T) in V/N(T).

- (a) Prove that \overline{T} is well-defined; that is, prove that if v + N(T) = v' + N(T), then T(v) = T(v').
- (b) Prove that \overline{T} is linear.
- (c) Prove that \overline{T} is an isomorphism.
- (d) Prove that the diagram shown in the figure commutes; that is, prove that $T = \overline{T}_{\eta}$.
- 22. Let *V* be a nonzero vector space over a field *F*, and suppose that *S* is a basis for *V*. Let C(S, F) denote the vector space of all functions $f \in \mathcal{F}(S, F)$ such that f(s) = 0 for all but



a finite number of vectors in S. Let $\Psi: C(S,F) \to V$ be defined by $\Psi(f) = 0$ if f is the zero function, and

$$\Psi(f) = \sum_{s \in S, f(s) \neq 0} f(s)s,$$

otherwise. Prove that Ψ is an isomorphism. Thus every nonzero vector space can be viewed as a space of functions.
